OPPORTUNITY

How much electricity could be saved by raising cooling setpoints across the GSA-owned portfolio?

\$2 MILLION @ GSA AVERAGE OF \$0.11 kWh¹ by raising cooling setpoints 2°F

TECHNOLOGY

How do Smart Ceiling Fans work?

SENSORS MEASURE TEMPERATURE AND **INCREMENTALLY** ADJUST FAN SPEED

TURN ON AND OFF AUTOMATICALLY BASED ON OCCUPANCY OR PREDETERMINED TEMPERATURES

M&V

Where did Measurement and Verification occur?

NATIONAL RENEWABLE ENERGY LABORATORY modeled energy savings and assessed the deployment potential for ceiling fans provided by Big Ass Solutions

RESULTS

What did modeling of Smart Ceiling Fans reveal?

4-11% **ENERGY SAVINGS**

WITH 4°F SETPOINT **INCREASE**

From 74°F to 78°F²

SAVINGS < \$1.50/ft²

GREATEST IN

FIRST 4 DEGREES OF SETPOINT CHANGE³

INSTALLED COST

For < 10-year payback⁴

Modeled Savings for Smart Fans

Energy savings for ENERGY STAR certified fans will be roughly equivalent

Energy Savings Across Climate Zones Savings are greatest in San Francisco

Installed Cost Needed for a 10-year Payback Assuming a 4°F increase in cooling setpoint

Location	Energy Savings kWh/ft²/yr	Energy Cost Savings \$/ft²/yr	Installed Cost for 10-year Payback \$/ft²
Miami, FL	1.19	\$0.117	\$1.17
Houston, TX	1.41	\$0.115	\$1.15
Phoenix, AZ	1.47	\$0.149	\$1.49
Atlanta, GA	1.26	\$0.131	\$1.31
Las Vegas, NV	1.26	\$0.119	\$1.19
San Francisco, CA	1.39	\$0.218	\$2.18
Baltimore, MD	1.26	\$0.140	\$1.40
Albuquerque, NM	1.02	\$0.105	\$1.05
Seattle, WA	1.19	\$0.095	\$0.95
Chicago, IL	0.81	\$0.075	\$0.75
Denver, CO	0.84	\$0.084	\$0.84
Minneapolis, MN	0.71	\$0.070	\$0.70

DEPLOYMENT

Where does the white paper recommend deploying Smart Ceiling Fans?

CONSIDER FOR OPEN OFFICES

Target facilities with:

- Ceilings at least 9 feet high and interior/desk partitions less than 54 inches tall
- At least 2,000 cooling degree days and full daytime business hours
- No features, such as lighting or air conditioning, that will interfere with fan blades
- Cooling setpoint lower than 75°, and no prohibitions against raising it

16SA Green Proving Ground, Smart Ceiling Fan – White Paper, K. Kiatreungwattana, M. Deru, J. DeGraw (NREL), August 2016, p.13 ²lbid, p.7 ³lbid, p.38 ⁴lbid, p.7

